Metabolomic assessment reveals an elevated level of glucosinolate content in CaCl₂ treated broccoli microgreens.

نویسندگان

  • Jianghao Sun
  • Liping Kou
  • Ping Geng
  • Huilian Huang
  • Tianbao Yang
  • Yaguang Luo
  • Pei Chen
چکیده

Preharvest calcium application has been shown to increase broccoli microgreen yield and extend shelf life. In this study, we investigated the effect of calcium application on its metabolome using ultra-high-performance liquid chromatography with mass spectrometry. The data collected were analyzed using principal component analysis and orthogonal projection to latent structural discriminate analysis. Chemical composition comparison shows that glucosinolates, a very important group of phytochemicals, are the major compounds enhanced by preharvest treatment with 10 mM calcium chloride (CaCl2). Aliphatic glucosinolates (glucoerucin, glucoiberin, glucoiberverin, glucoraphanin, pentyl glucosinolate, and hexyl glucosinolate) and indolic glucosinolates (glucobrassicin, neoglucobrassicin, and 4-hydroxyglucobrassicin) were increased significantly in the CaCl2 treated microgreens using metabolomic approaches. Targeted glucosinolate analysis using the ISO 9167-1 method was further employed to confirm the findings. Results indicate that glucosinolates can be considered as a class of compounds that are responsible for the difference between two groups and a higher glucosinolate level was found in CaCl2 treated groups at each time point after harvest in comparison with the control group.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selective increase of the potential anticarcinogen 4-methylsulphinylbutyl glucosinolate in broccoli.

The putative anticarcinogenic activity of Brassica vegetables has been associated with the presence of certain glucosinolates. 4-Methylsulphinylbutyl isothiocyanate (sulphoraphane), derived from the corresponding glucosinolate found in broccoli, has previously been identified as a potent inducer of the anticarcinogenic marker enzyme quinone reductase [NADP(H):quinone-acceptor oxidoreductase] in...

متن کامل

Broccoli Microgreens: A Mineral-Rich Crop That Can Diversify Food Systems

Current malnourishment statistics are high and are exacerbated by contemporary agricultural practices that damage the very environments on which the production of nutritious food depends. As the World's population grows at an unprecedented rate, food systems must be revised to provide adequate nutrition while minimizing environmental impacts. One specific nutritional problem that needs attentio...

متن کامل

Chemopreventive glucosinolate accumulation in various broccoli and collard tissues: Microfluidic-based targeted transcriptomics for by-product valorization

Floret, leaf, and root tissues were harvested from broccoli and collard cultivars and extracted to determine their glucosinolate and hydrolysis product profiles using high performance liquid chromatography and gas chromotography. Quinone reductase inducing bioactivity, an estimate of anti-cancer chemopreventive potential, of the extracts was measured using a hepa1c1c7 murine cell line. Extracts...

متن کامل

UVA, UVB Light, and Methyl Jasmonate, Alone or Combined, Redirect the Biosynthesis of Glucosinolates, Phenolics, Carotenoids, and Chlorophylls in Broccoli Sprouts

Broccoli sprouts contain health-promoting phytochemicals that can be enhanced by applying ultraviolet light (UV) or phytohormones. The separate and combined effects of methyl jasmonate (MJ), UVA, or UVB lights on glucosinolate, phenolic, carotenoid, and chlorophyll profiles were assessed in broccoli sprouts. Seven-day-old broccoli sprouts were exposed to UVA (9.47 W/m²) or UVB (7.16 W/m²) radia...

متن کامل

Cultivation conditions and selenium fertilization alter the phenolic profile, glucosinolate, and sulforaphane content of broccoli.

Broccoli is a food often consumed for its potential health-promoting properties. The health benefits of broccoli are partly associated with secondary plant compounds that have bioactivity; glucosinolates and phenolic acids are two of the most abundant and important in broccoli. In an effort to determine how variety, stress, and production conditions affect the production of these bioactive comp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of agricultural and food chemistry

دوره 63 6  شماره 

صفحات  -

تاریخ انتشار 2015